查看原文
其他

生命的暂停键?同日两篇《自然》:科学家首次在小鼠大脑中找到“冬眠开关”

学术经纬 学术经纬 2022-04-17


▎药明康德内容团队编辑  


童话故事中,睡美人沉睡100年,时间停滞,容颜不老;科幻电影中,宇航员在漫长的星际旅行时,静静躺在休眠舱里,穿越浩瀚太空。

尽管这些是人们幻想中的情形,根据科学家们最新的一组发现,按下“生命暂停键”的想法离现实或许没有那么遥远

近日,顶尖学术期刊《自然》在线发表了两篇研究论文,来自美国哈佛医学院和日本筑波大学的两支研究团队,“背靠背”在小鼠的大脑中找到一群特殊的神经细胞,对体温控制起着关键作用。人为激活这些神经细胞,可以触发小鼠进入类似冬眠的状态,让体温和能量消耗都大大降低。并且,动物从这种状态恢复后,没有出现组织器官和行为异常研究人员希望,基于这一发现,可以在人类身上实现“人工冬眠”

《自然》刊发的评论认为,这两项研究刷新了我们对体温调节的认识

大自然中,蛙、蛇、熊等动物可以在严酷的冬天、食物短缺的季节或是其他极端条件下,通过冬眠行为(季节性休眠)生存下来。与日常的睡眠不同,冬眠涉及全身生理变化,心跳减慢、呼吸变弱,耗氧量更少,体温还会显著下降

为什么有的动物会冬眠、有的动物不冬眠?这个问题不仅让五六岁小孩子好奇,也激发了很多科学家为之探索。


研究人员指出,冬眠研究困难的一个原因是,常用的实验动物小鼠、大鼠并不冬眠。不过,哈佛医学院Michael Greenberg教授带领的研究团队注意到,小鼠在食物匮乏、周围又冷时,会进入一种短暂的麻木萎靡(torpor)状态。在环境温度低至22℃时,24小时饿肚子的小鼠核心体温会降低,代谢率和身体活动也显著下降,相比之下,吃饱的小鼠能够保持正常体温。

研究小组利用神经元活性的生物标记物,在小鼠的脑中寻找那些在进入麻木状态时会被激活的神经元。

▲寻找并确认在麻木状态时会被激活的神经元(图片来源:参考资料[4])

在此过程中,他们把搜寻范围集中在了下丘脑,也就是负责体温调节、饥饿、干渴、激素分泌等功能的脑区。研究人员在下丘脑的数百个不同区域,一一确认哪些区域的神经元在被激活后会引起小鼠麻木。

艰苦搜寻之下,他们最终在下丘脑的一个特定区域(内外侧视前区),确定了一组神经元。仅仅刺激这组神经元,就能让小鼠体温迅速降低,活动大大减少;而抑制这些神经元的活性时,还可以避免饥饿小鼠进入麻木状态。研究人员继而通过单细胞RNA测序等方法,鉴定出这组神经元表达哪些标志性蛋白,比如神经递质等。


另一篇研究论文中,日本筑波大学的科学家们采用不同的方法、在下丘脑的类似区域,找到了同样的“神经开关”他们将这群神经细胞命名为Q神经元(Quiescence)。

通过基因改造,研究人员们得以用化学物质或光照特异性地激活小鼠脑中的Q神经元。他们惊讶地发现,小鼠的核心体温下降了近10度,并且可以连续48小时呈现动物冬眠特有的状态:不吃不动,心率降低,耗氧量减少等。“当周围环境大幅度下降时,它们的机体功能保持正常,体温变得更低,维持在22℃左右。”研究负责人樱井武教授说。

▲短暂激活Q神经元后,小鼠的核心体温从37℃降低到24℃(图片来源:参考资料[1])

“更令我们意外的是,在既不冬眠也没有日常麻木萎靡(torpor)的大鼠身上,激活Q神经元也会触发与小鼠类似的冬眠状态。”第一作者高桥彻说,“尽管我们还不知道确切的答案,但人类也有可能具备Q神经元,可以触发类似的状态。“

下一步,人类也能“一键休眠”吗?“现在说我们是否可以在人身上诱发同样的状态还为时尚早,但这是一个值得探索的目标。”Greenberg教授说道。

▲我们的征途是星辰大海(图片来源:Pixabay)

谈到“人工冬眠”的未来应用,两支科研团队都展开了诸多设想,例如可以在临床手术中代替麻醉;发生中风或外伤后,放慢代谢过程,避免大脑进一步受损;用来延长寿命;甚至把幻想变成现实,为人类的火星之旅、太空探索提供帮助。

 “当我们设想人类也可以出现类似冬眠的状态时,想象力变得越来越疯狂。”研究作者之一、哈佛医学院的Sinisa Hrvatin博士说。

参考资料:
[1] Takahashi, T. M. et al. (2020) A discrete neuronal circuit induces a hibernation-like state in rodents. Nature https://doi.org/10.1038/s41586-020-2163-6 (2020).
[2] Hvratin, S. et al. (2020) Neurons that regulate mouse torpor. Nature https://doi.org/10.1038/s41586-020-2387-5 (2020). 
[3] Clifford B. Saper & Natalia L. S. Machado (2020) Flipping the switch on the body’s thermoregulatory system. Nature. Doi: 10.1038/d41586-020-01600-5
[4] State of Stasis. Retrieved June 14, 2020, from https://hms.harvard.edu/news/state-stasis
[5] Hibernation in mice: Are humans next? Retrieved June 14, 2020, from https://www.eurekalert.org/pub_releases/2020-06/uot-him061220.php


本文来自药明康德内容微信团队,欢迎转发到朋友圈,谢绝转载到其他平台。如有开设白名单需求,请在“学术经纬”公众号主页回复“转载”获取转载须知。其他合作需求,请联系wuxi_media@wuxiapptec.com。



新冠病毒专题
官方命名 | 不是人造病毒 | 戴口罩管用 | 复杂的基因组产物 | 受体结合能力 | CRISPR检测技术 出现症状就晚了 突破人体防线

癌症突破
抗癌疫苗 | 癌症地图 | KRAS | 酒精 | CAR-T 2.0 | 单细胞CAR-T | 外泌体 | 白血病免疫疗法 | 膳食纤维与肝癌 | 中年危机 | 液体活检 | 化疗与癌症转移 | 抽烟喝酒要不得 | 癌症转移 | 癌细胞变脂肪 | 自噬反应 | 钾离子 | PD-L1远程攻击 | CAR-T安全性  | 染色体外DNA | 癌症全基因组 肿瘤内的细菌

智慧之光
大脑逻辑 | 母爱 | 脑细胞 | 阿兹海默病血检 | 孤独 | 可乐 | 生酮饮食 | 阿兹海默病毒假说 | 大脑抗衰老 | 麦克阿瑟天才奖 | APP蛋白 | 畅游大脑 | 细菌感染假说 | 睡眠与心血管疾病 | 电击提高记忆力 | 明星抗抑郁药 | 重新定义生死  | 脑机接口 | 分子蓝图 | 突破血脑屏障

热门前沿
膳食纤维 | 人工智能 | 耐寒 | 维生素D | 脂肪治疗 | 细菌耐药 | 性别逆转 | 延年益寿 | 细胞分裂 | 减肥新方 | 单染色体酵母 | 吃不胖的方法 | 精准医学 | 单性生殖 | 胚胎发育 | 基因疗法 | 蚊子吃减肥药 | AI医生 |长寿天然分子 | 细胞排除垃圾 | 大道至简 | 吸猫 | 太空旅行 | 打印器官 全新抗生素 | 压力催生白发 | 吃不胖的基因


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存